Non-oscillatory Central Differencing for Hyperbolic Conservation Laws Haim Nessyahu and Eitan Tadmor
نویسندگان
چکیده
Many of the recently developed high-resolution schemes for hyperbolic conservation laws are based on upwind di erencing. The building block of these schemes is the averaging of an approximate Godunov solver; its time consuming part involves the eld-byeld decomposition which is required in order to identify the \direction of the wind." Instead, we propose to use as a building block the more robust Lax-Friedrichs (LxF) solver. The main advantage is simplicity: no Riemann problems are solved and hence eld-byeld decompositions are avoided. The main disadvantage is the excessive numerical viscosity typical to the LxF solver. We compensate for it by using high-resolution MUSCL-type interpolants. Numerical experiments show that the quality of the results obtained by such convenient central di erencing is comparable with those of the upwind schemes. c Academic Press, Inc.
منابع مشابه
Third order nonoscillatory central scheme for hyperbolic conservation laws
A third-order accurate Godunov-type scheme for the approximate solution of hyperbolic systems of conservation laws is presented. Its two main ingredients include: 1. A non-oscillatory piecewise-quadratic reconstruction of pointvalues from their given cell averages; and 2. A central differencing based on staggered evolution of the reconstructed cell averages. This results in a third-order centra...
متن کاملNumerical integration of the plasma fluid equations with a modification of the second-order Nessyahu-Tadmor central scheme and soliton modeling
Here we outline a modification of the second order central difference scheme based on staggered spatial grids due to Nessyahu and Tadmor [H. Nessyahu, E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys. 87 (1990) 408] to a non-staggered scheme for one-dimensional hyperbolic systems which can additionally include source terms. With this modification...
متن کاملTwo-scale numerical solution of the electromagnetic two-fluid plasma-Maxwell equations: Shock and soliton simulation
Here, we indicate how to integrate the set of conservation equations for mass, momentum and energy for a two-fluid plasma coupled to Maxwell’s equations for the electromagnetic field, written in a composite conservative form, by means of a recently modified non-staggered version of the staggered second order central difference scheme of Nessyahu and Tadmor [H. Nessyahu, E. Tadmor, Non-oscillato...
متن کاملNon-oscillatory Central Differencing for Hyperbolic Conservation Laws
Many of the recently developed high-resolution schemes for hyperbolic conservation laws are based on upwind differencing. The building block of these schemes is the averaging of an approximate Godunov solver; its time consuming part involves the field-by-field decomposition which is required in order to identify the “direction of the wind.” Instead, we propose to use as a building block the mor...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کامل